Strong and $Delta$-convergence theorems for total asymptotically nonexpansive mappings in CAT(0)

نویسندگان

  • G.S. Saluja Department of Mathematics, Govt. Nagarjuna P.G. College of Science, Raipur - 492010 (C.G.), India
  • Hemant Kumar Nashine Department of Mathematics, Texas A & M University - Kingsville - 78363-8202, Texas, USA
  • Yumnam Rohen Singh National Institute of Technology Manipur, Takyelpat, Imphal-795001, Manipur, India
چکیده مقاله:

In this work we use the Noor iteration process for total asymptotically nonexpansive mapping to establish the strong and $Delta$-convergence theorems in the framework of CAT(0) spaces. By doing this, some of the results existing in the current literature  generalize, unify and extend.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Convergence Theorems for Asymptotically Nonexpansive Mappings and Total Asymptotically Nonexpansive Non-Self Mappings

In this paper, we proposed a new two-step iteration scheme of hybrid mixed type for two asymptotically nonexpansive self mappings and two total asymptotically nonexpansive non-self mappings and establish some weak convergence theorems for mentioned scheme and mappings in the setting of uniformly convex Banach spaces. Our results extend and generalize several results from the current existing li...

متن کامل

Strong Convergence Theorems for Asymptotically Nonexpansive Nonself- Mappings

Suppose C is a nonempty bounded closed convex retract of a real uniformly convex Banach space X with uniformly Gâteaux differentiable norm and P as a nonexpansive retraction of X onto C. Let T : C −→ X be an asymptotically nonexpansive nonself-map with sequence {kn}n≥1 ⊂ [1,∞), lim kn = 1, F (T ) = {x ∈ C : Tx = x}, and let u ∈ C. In this paper we study the convergence of the sequences {xn} and...

متن کامل

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

In this paper, first, we introduce the condition (BP) which is weaker than the completely continuous mapping in Banach spaces. Second, we consider a simple iteration and prove some strong convergence theorems of the proposed iteration for an asymptotically nonexpansive nonself-mapping with the condition (BP). Finally, we give two examples to illustrate the main result in this paper. Our results...

متن کامل

Strong Convergence Theorems for Asymptotically Nonexpansive Mappings and Asymptotically Nonexpansive Semigroups

A point x ∈ C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T ; that is, F(T)= {x ∈ C : Tx = x}. Also, recall that a family S= {T(s) | 0≤ s <∞} of mappings from C into itself is called an asymptotically nonexpansive semigroup on C if it satisfies the following conditions: (i) T(0)x = x for all x ∈ C; (ii) T(s+ t)= T(s)T(t) for all s, t ≥ 0; (iii) there exists ...

متن کامل

Convergence theorems for nonself asymptotically nonexpansive mappings

In this paper, we prove some strong and weak convergence theorems using a modified iterative process for nonself asymptotically nonexpansive mappings in a uniformly convex Banach space. This will improve and generalize the corresponding results in the existing literature. Finally, we will state that our theorems can be generalized to the case of finitely many mappings. c © 2007 Elsevier Ltd. Al...

متن کامل

Strong Convergence Theorems for a Countable Family of Total Quasi-φ-Asymptotically Nonexpansive Nonself Mappings

The purpose of this paper is to introduce a class of total quasi-φ-asymptotically nonexpansivenonself mappings and to study the strong convergence under a limit condition only in the framework of Banach spaces. As an application, we utilize our results to study the approximation problem of solution to a system of equilibrium problems. The results presented in the paper extend and improve the co...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  245- 260

تاریخ انتشار 2017-06-08

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023